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For half a century, the process of economic integration of the
Amazon has been based on intensive use of renewable and
nonrenewable natural resources, which has brought significant
basin-wide environmental alterations. The rural development in
the Amazonia pushed the agricultural frontier swiftly, resulting in
widespread land-cover change, but agriculture in the Amazon has
been of low productivity and unsustainable. The loss of biodiversity
and continued deforestation will lead to high risks of irreversible
change of its tropical forests. It has been established by modeling
studies that the Amazon may have two “tipping points,” namely,
temperature increase of 4 °C or deforestation exceeding 40% of
the forest area. If transgressed, large-scale “savannization” of mostly
southern and eastern Amazon may take place. The region has
warmed about 1 °C over the last 60 y, and total deforestation is
reaching 20% of the forested area. The recent significant reductions
in deforestation—80% reduction in the Brazilian Amazon in the last
decade—opens up opportunities for a novel sustainable develop-
ment paradigm for the future of the Amazon. We argue for a new
development paradigm—away from only attempting to reconcile
maximizing conservation versus intensification of traditional agricul-
ture and expansion of hydropower capacity—in which we research,
develop, and scale a high-tech innovation approach that sees the
Amazon as a global public good of biological assets that can enable
the creation of innovative high-value products, services, and plat-
forms through combining advanced digital, biological, and material
technologies of the Fourth Industrial Revolution in progress.

Amazon tropical forests | Amazon sustainability | Amazon land use |
Amazon savannization | climate change impacts

Anumber of complex problems threaten our geopolitical, en-
vironmental, social, and economic stability: the links between

global food and energy markets; the unsustainable depletion of
natural resources and biodiversity stocks; the increasing water in-
security around the world; and, above all, the urgent need both to
decarbonize the energy systems of the world to avoid catastrophic
climate change and to adapt to unavoidable climate change un-
derway. The scale and reach of the risks associated with climate
change, together with their potentially irreversible nature, make
this probably the greatest market failure and the starkest example
of a “tragedy of the commons” the world has ever seen. To put this
comparison in perspective, the net benefit to the world economy of
a 50% reduction of tropical forest deforestation and degradation
has been estimated at US $3.7 trillion (1).
Of particular importance is the continued deforestation in the

Amazon, which could lead to the irreversible change of its
tropical forests (2, 3) and the major loss of its biodiversity (4).
The Amazon ecosystems harbor about 10 to 15% of land bio-
diversity (5, 6); its abundant rainfall of about 2.2 m·y−1 makes the
region an important heat source for the atmosphere (7), gener-
ating an estimated 210,000 m3·s−1 to 220,000 m3·s−1 of river
discharge (8, 9), which is ∼15% of the freshwater input into the
oceans (10); it stores an estimated 150 billion to 200 billion tons

of carbon (11–15); and it presents a mosaic of ethnological and
linguistic diversity (16, 17).
A number of large-scale drivers of environmental change are

operating simultaneously and interacting nonlinearly in the
Amazon, namely, land-use change and climate changes due to
global warming and to deforestation, which may, in turn, induce
higher frequency of extreme climate events and of vegetation
fires, adding to increased tropical forests’ exposure and vulner-
ability. Our scientific understanding has increased about the risks
associated with these drivers of change acting synergistically (18,
19). By and large, environmental change in the region is a re-
sponse to the global economy. Global market demand growth for
animal and vegetable protein (20–22), new transportation and
energy infrastructure projects (23), and weak institutions (24)
can be cited as some of key drivers in this process.
The prevailing model for rural development in the Amazon over

the last half century—replacing forests with agriculture, cattle
ranching, and large-scale hydropower generation—has long been
outdated for a number of environmental, economic, and social
reasons (25–27). For instance, for Brazil, the gross agricultural
product of the Amazon represents 14.5% of Brazil’s agriculture
sector gross domestic product (GDP), using a deforested area of
about 750,000 km2. In contrast, São Paulo state accounts for 11.3%
of the agriculture sector GDP, using an area of approximately
193,000 km2 (see Tables S1–S3 in Datasets Used to Derive Agri-
cultural Sector GVA for the Brazilian Amazon). The conclusion is
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The Amazonian tropical forests have been disappearing at a
fast rate in the last 50 y due to deforestation to open areas for
agriculture, posing high risks of irreversible changes to bio-
diversity and ecosystems. Climate change poses additional risks
to the stability of the forests. Studies suggest “tipping points”
not to be transgressed: 4° C of global warming or 40% of total
deforested area. The regional development debate has focused
on attempting to reconcile maximizing conservation with in-
tensification of traditional agriculture. Large reductions of de-
forestation in the last decade open up opportunities for an
alternative model based on seeing the Amazon as a global
public good of biological assets for the creation of high-value
products and ecosystem services.
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inescapable: Over 50 y of a deforestation-based development
model have not resulted in wealth creation or better quality of life
for those living in the Amazon—the Amazônidas (28, 29). More-
over, in terms of development policy pathways for the Amazon,
two modes have historically dominated: (i) a valuable nature
conservation approach with large swathes of territory legally pro-
tected from any economic and human activity outside indigenous
peoples and (ii) an approach that has focused on conversion or
degradation of forests for the production of either protein com-
modities or tropical timber at the forest frontier and the build-out
of massive hydropower generation capacity—which, together,
have been historically responsible for massive deforestation of
the Amazon (30, 31) and generated other significant negative ex-
ternalities. We argue therefore that there is a “Third Way” within
reach that sees the Amazon as a global public good of biological
assets and biomimetic designs that can enable the creation of in-
novative high-value products, services, and platforms for current
and for entirely new markets.
It is urgent to halt deforestation, keeping in mind that almost 1

million square kilometers of the Amazon tropical forests have al-
ready been deforested and another equal portion finds itself in the
process of degradation (27). The rate of deforestation has declined
in the last several years; this decline is conspicuous in the Brazilian
Amazon, where deforestation rates have been cut down by almost
80% since 2005 (32–34) at the same time that the agricultural
output in the region has been increasing significantly (35). It is
therefore becoming clear that economic growth is decoupled from
deforestation as demonstrated by ample facts, such as the case of
the reduction of deforestation rates observed between 2005 and
2014, which are opposed to the growth of the values of agricultural
gross value added (GVA) in North Brazil, which almost tripled
during this period (32). Since 2005, deforestation rates in Brazilian
Amazon have decreased from almost 30,000 km2·y−1 to a rate of
around 6,000 km2·y−1, on average, from 2011 to 2015 (33), in-
dicating the difficulties of zero deforestation targets (36). This sharp
decline of deforestation was enabled by several factors, including
purpose-built satellite monitoring capabilities, effective law en-
forcement and compliance, industry value chain initiatives like the
soy moratorium, restrictions on access to credit for farms located in
deforested areas, and expansion of protected areas and indigenous
territory encompassing 47% of the entire Brazilian Amazon region
(37). Long-term-demand growth for agricultural commodities in the
emerging markets, weak institutions, and large energy infrastructure
projects may potentially contribute as underlying and proximate
drivers to the return of high deforestation rates in the absence of
alternative development pathways (27, 30, 38–40).
The present economic scenario continues to conspire against

the Amazon by placing a higher premium on agricultural com-
modities such as soybeans, meat, and tropical timber than on
standing forests. The long-term success of antideforestation
policies must rest on firmer ground besides command and con-
trol measures to curb illegal deforestation.
The challenge, therefore, is to reconcile the current develop-

ment model with a new paradigm for sustainable development of
the Amazon. A corollary to this greater challenge is the urgent
need to deploy a high-tech innovation ecosystem approach to
serve as the basis for this new model of sustainable development
for the Amazon.
In this review, we assess scientific knowledge on climate var-

iability and extremes, on anthropogenic drivers of environmental
change in the region, and on the impacts and risks for the future
of the tropical forests, and we propose a paradigm for the sus-
tainable development of the Amazon, a model that intrinsically
depends on the existence of the forests.

Climatic Variability and Extremes, and the Lengthening of
the Dry Season
Precipitation Variability and Extremes. A suite of geographical,
geomorphological, and climatic factors makes the Amazon basin
an area with high precipitation. The average basin-wide annual
precipitation is on the order of 2,200 mm, ranging from
3,000 mm in the west, due to the influence of the Andes, to
values around 1,700 mm over the southeast of the basin, areas of
intense land-use and land-cover change, known as “deforestation
arc” (41). High precipitation rates are maintained both by
moisture flows from evaporation in the tropical Atlantic Ocean
and by forest evapotranspiration (ET) recycling (7, 42). Pre-
cipitation seasonality varies markedly across the basin: minimum
monthly precipitation of >150 mm·mo−1 and short or absent dry
season in the west and northwest, in contrast to a very seasonal
regime in the south and southeast with longer dry seasons
(>4 mo with monthly values of <100 mm) (43, 44). Given av-
erage forest ET of 3.5 mm·d−1 to 4 mm·d−1 (45), below about
100 mm·mo−1 of precipitation, ET is assumed to exceed in-
coming precipitation, and the forest is in water deficit (46).
Precipitation pattern in the Amazon basin has a strong in-

terannual and interdecadal variability, largely influenced by
fluctuations in sea surface temperature (SST) of the tropical
Pacific (related mostly to El Niño−Southern Oscillation) and
tropical Atlantic (Atlantic “Dipole” Mode) Oceans. Severe
droughts are associated, in general, with the occurrence of strong
El Niño events affecting mostly the central and eastern portions
of the Amazon, as was the case in 1906, 1912, 1926, 1983, 1992,
1998 (47), and 2015 (33). On the other hand, the warmer tropical
North Atlantic and cooler tropical South Atlantic affect also the
west and northwest of the basin and were responsible for the
severe droughts that occurred in 1964, 2005 (48), and 2010 (49),
which was recognized as one of the strongest and extensive
droughts of recent decades: The 2005 drought affected about 1.9
million square kilometers, whereas the 2010 drought affected
around 3 million square kilometers (50).
Although droughts and floods are part of the Amazon natural

climate variability, the extreme drought and flood events that
took place in the past decade (2005, 2010, and 2015 droughts;
2009 and 2012 floods) have been unusual and may have long-
term implications. Global warming is projected to increase the
frequency and even the intensity of extreme events (51). Drought
extreme events have the potential to increase the mortality of
forests, and the synergistic association between severe droughts,
deforestation, and fire can be highly deleterious to the Amazon
forest (see CO2 Fertilization and Forest Mortality).

The Lengthening of the Dry Season. Another important aspect of
the functioning and maintenance of the Amazon forest is the dry
season length being shorter than about 4 mo. There is growing
evidence of lengthening of the region’s dry season, primarily over
southern and southeastern Amazon (49, 52, 53). The reasons for
this lengthening are still not very clear. It has been suggested that
large-scale influence of SST gradients of the North and South
Atlantic (49, 54, 55), or a strong influence of dry season ET (56,
57), in response to a seasonal increase of solar radiation (58),
may play a role.
In particular, this apparent lengthening of the dry season has

been quantified: The dry-season length has been observed to
have increased [(6.5 ± 2.5) days per decade] over southern
Amazonia since 1979, primarily owing to a later onset of the wet
season, and is accompanied by a prolonged fire season (53).
These changes cannot be simply linked to the interannual vari-
ability of the tropical Pacific and Atlantic Oceans and may in-
dicate that, in addition to the moisture transports from the
oceans, soil moisture from continental areas could act as an
important precondition for the onset of the wet season (59–61).

2 of 10 | www.pnas.org/cgi/doi/10.1073/pnas.1605516113 Nobre et al.

www.pnas.org/cgi/doi/10.1073/pnas.1605516113


www.manaraa.com

Therefore, understanding the forests’ ability to maintain high ET
rates during low-precipitation periods is an important element to
better understand not only the drought-forest response, but also
aspects that influence the transition from dry to wet season.

Seasonal Variability in ET. Considering a wide range of climate
variability patterns in the Amazon, it could be expected that
other hydroclimatic variables also exhibited a large spatial and
temporal variability. In fact, it is known that seasonal and in-
terannual variations of the ET in tropical forests are mainly
controlled by variations in the light (radiation) and soil moisture
(62). Data from flux towers installed in the region as a result of
the Anglo-Brazilian Amazonian Climate Observation Study
(ABRACOS) and the Large-Scale Biosphere-Atmosphere Ex-
periment in Amazonia (LBA) indicated the occurrence of ET
rates as high in the dry season as in the wet season (45). How-
ever, in regions such as eastern and southern Amazon, this was
not the case (63). From data obtained from the LBA flux towers
networks, it was observed that, in experimental sites where the
average annual rainfall exceeds 1,900 mm and the average dry
season length is less than 4 mo (e.g., Manaus, Santarém, and
Rondônia), ET rates tend to increase in the dry season in re-
sponse to an increase in solar radiation, reaching values of
around 4 mm, similar to wet season ET values (64). On the other
hand, regions with average annual rainfall below 1,700 mm and
longer dry seasons (>4 mo), such as in southern and southeast-
ern Amazon, showed clear evidence of decreasing ET during the
dry season, with maximum values of around 2.5 mm·d−1. A similar
threshold of close to 2,000 mm of annual rainfall was identified
in the photosynthesis and ET patterns along the Amazon forest
and for tropical forests in Africa and Asia (65). In regions where
the annual rainfall is above this value, water stored in the soil
during the wet season seems to be able to supply ET and pho-
tosynthesis for the subsequent dry season. However, this nor-
mally is not the case for regions where the average annual
rainfall is below this value, highlighting a clear spatial and sea-
sonal pattern of ET and photosynthesis variability (66). The ET’s
controlling mechanisms also varied over this rainfall gradient,
with climate demands (particularly radiation and vapor pressure
deficit) controlling ET rates in wetter areas and soil moisture
deficit controlling ET in the driest areas (64).
Due to the Amazon’s huge dimension and diversity, some

Amazon regions could present high values of ET during the dry
season even when annual precipitation, on average, is smaller
than 2,000 mm. In Paragominas, for example, at the northeast
flank of the Amazon, the mean annual precipitation of 1,800 mm
can sustain high ET rates even during a dry season lasting for
about 5 mo (67). Storage of water in deep, clay-rich soil layers
may presumably be the reason for maintenance of ET in periods
of absence of rain (67–70).
Despite some exceptions, in general, the driest regions in the

Amazon are found in the southern and southeastern portions,
presenting a climate pattern similar to a savannah, where the
vegetation responds with loss of leaves and dormant state in
response to water stress of the prolonged dry season (64). This
region, known as the “Arc of Deforestation,” is experiencing
heavy anthropogenic change and could be presenting signals of
change in the equilibrium state, in the sense of the prevalence of
a dry vegetation type (71).

Climate Change: Global and Regional Perspectives
Global Climate Change. Climate change resulting from increased
emissions of greenhouse gases, and from other anthropogenic
forcings, has the potential to increase air temperature and cause
complex changes in precipitation patterns (51). Despite the im-
portance of understanding how climate affects the structure and
functioning of the tropical forest as we know it today, it has not
been an easy task to identify current and plausible future changes

in climate variables—especially those related to the hydrological
cycle—in these regions. For the Amazonian forest, this difficulty
is due, in part, to the scarcity of historical data and, in part, to the
natural variability of precipitation (72).
The Amazon—similarly to all continental areas of the world—

has warmed about 1 °C during the last century (51, 73, 74). The
temperature increase was more pronounced since the 1970s and
was attributed to the global temperature increase caused pri-
marily by greenhouse gas emissions (51, 75, 76). Temperature
increases are more pronounced in deforested areas during the
dry season and can reach between 1 °C and 1.5 °C, on average,
solely due to the effect of deforestation, because the surface
energy budget is altered and sensible heating is higher for areas
covered with pastures in the Amazon (77).
It has been more difficult to identify long-term changes in

rainfall patterns in the Amazon. This is due to the large natural
variability, relatively small number of weather stations, and im-
portant gaps in time series (72, 78). To complement these
studies, some assessments have been based on river discharge
data, rather than precipitation, due to their better integrative
nature and dataset consistency (79, 80). Although some studies
indicated a decreasing trend in rainfall (drying) in the Amazon,
in recent decades (80–83), others pointed to a wetting trend for
the region, as a result of an intensification of the hydrological
cycle (79, 84, 85). These wetting trends (up to 80 mm·mo−1 in the
period 2000–2009 compared with period 1981–1990) are not
homogeneously distributed around the basin, and they tend to
occur during the wet season over the northwestern part of the
basin. On the other hand, the decreasing wet season rainfall
trend (−20 mm·mo−1 for the same period) was observed in the
southern and southeastern parts of the basin (79).
Precipitation reductions observed in the last two decades over

southern and southeastern Amazon cannot, as yet, be fully
explained, but one possible explanation could be the effects of
extensive land-use change in this region and relative changes in
the albedo (79, 86). The increasing precipitation trend observed
during the rainy season was attributed to a gradual warming of
the tropical North Atlantic SST and the resulting increase of
water vapor supply from the ocean toward the continent (79).
The influence of the tropical North Atlantic SST anomalies,
however, is more gradual and has a different pattern from that
observed during 2005 and 2010 droughts, when North Atlantic
SST anomalies resulted in changes in the Intertropical Conver-
gence Zone (ITCZ) position (79). The important point here is
that, even for wetter conditions, the southern and southeastern
Amazon forest presented drying trends in the last two decades.
Observed interdecadal trends in precipitation (87) have been
associated with natural climate variability—somewhat different
from the apparent lengthening of the dry season in Amazonia—
and sharp shifts in precipitation patterns in the mid 1940s, 1970s,
and 2000s are likely linked to phase shifts of the Pacific Decadal
Oscillation (72, 80, 88, 89).
In summary, the observed absence of a significant long-term

trend in Amazon river discharge—a proxy of basin-wide pre-
cipitation variations—highlights the difficulty of detecting clear
long-term, anthropogenic climate change impacts in precipita-
tion. In contrast, the observed increase in the frequency of ex-
tremes over the past decade (see Precipitation Variability and
Extremes) could be an early manifestation of global climate
change (90), because there have been both positive and negative
precipitation extremes, which, however, did not alter significantly
the long-term basin-wide averages.

Tropical Deforestation and Regional Climate Change. Deforestation
can affect vegetation through changes in the regional climate.
Modeling studies suggest that a decrease in the ET rates and an
increase in atmospheric temperature were caused by the large-
scale replacement of the Amazon forests by pasture (7, 91, 92). It
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is estimated that these changes will lead to changes in local
precipitation patterns, but how large these changes will be is still
uncertain. Small-scale deforestation can lead to an increase in
local precipitation by the so-called “wind effect” (93, 94). On the
other hand, large-scale deforestation may act to decrease the
precipitation rate. Increases in nonprecipitation clouds and a
decrease in the dry season precipitation have been observed over
deforested areas in Amazonia (95). Modeling studies simulating
the rainforest replacement by pasture also showed a decrease in
rainfall with an increase in deforested areas (7, 91, 92, 96–98).
The extent of total deforested area also matters, with greater
effects occurring for deforested areas exceeding 40% of the total
area covered by forests (91). Complete deforestation could cause
eastern Amazonia to warm by more than 3 °C, and precipitation
from July to November could decrease by up to 40%. Crucially,
these changes would be in addition to any change resulting from
global warming.
Regional climate models with higher spatial resolution (25-km

grid) project a smaller decrease of regional precipitation
(−62 mm·y−1) for a complete deforestation scenario (96). Some
regional models also show that low levels of deforestation (up to
around 20%) increase calculated precipitation over the defor-
ested area as a result of a heterogeneous heating of the land
surfaces, which increases mesoscale convection (“vegetation
breeze”) and cloud formation (96, 99). However, the importance
of this effect varies according to the size and pattern of the de-
forestation patches (100) as well as the model considered. Most
regional models agree that the effect of the vegetation breeze
vanishes beyond a certain area of deforestation (around 30%)
for which a decrease of regional precipitation is expected, es-
pecially during the dry season (99, 101). It is important to
highlight that examples of land-use change that has been suffi-
ciently widespread to detect its effect on river discharge over and
above the effects of interannual variation or trends in pre-
cipitation patterns are currently limited to watersheds that were
dominated by neighboring Cerrado vegetation, with only small
fractions of Amazon forest vegetation (102, 103). It may be
necessary to have a similar magnitude of land-use change in
forest-only subbasins of the Amazon in order for its effect to be
unequivocally established.
A key to risk analysis for the maintenance of the Amazon

ecosystems is that the impacts of deforestation are greater under
drought conditions, as fires used for forest clearance frequently
get out of control and burn larger areas (see Extreme Droughts,
Deforestation, and Fire). The impact of land-use change on sim-
ulated precipitation and temperature occurs primarily during the
dry season and in regions of relatively low annual mean pre-
cipitation, projecting precipitation reductions and temperature
increases (104). Reducing deforestation may help to boost forest
resilience under a changing climate. Forest fires, drought, and
logging increase susceptibility to further burning, and de-
forestation and smoke can inhibit precipitation, exacerbating fire
risk (see Extreme Droughts, Deforestation, and Fire). The likely
continuation of strong El Niño episodes (e.g., 1997−1998 and
2015–2016 episodes) into the near future and the possibility that
the pattern of intense Amazon droughts seen in the last decade
continues into the future, keeping business as usual policies,
means that a large fraction of the forest will be cleared, logged,
damaged by drought, or burned in the next few decades (105).
In sum, we can say that reducing deforestation could minimize

these impacts as well as mitigate emissions of greenhouse gases.
It has been suggested that there may be thresholds or “tipping
points” that should not be transgressed for the maintenance of
the Amazonian tropical forests: 40% of area deforested, beyond
which forest loss causes climate impacts that cause further forest
loss (91); global warming of 3 °C to 4 °C may also lead to a
similar tipping point (106, 107). Although the existence of these
tipping points still requires further research, interaction between

climate change due to global warming and due to large-scale
deforestation may make them more likely.
In sum, the observations of changes in hydroclimatic factors

(e.g., the lengthening of the dry season and the enhanced oc-
currence of precipitation extremes)—added to global warming
scenarios of increased temperatures and continued deforestation
and forest fires—may wreak havoc on the stability of tropical
ecosystems (see Third Way as Paradigm of Sustainable Develop-
ment for the Amazon).

Impacts of Anthropogenic Drivers of Change in the Amazon
Extreme Droughts, Deforestation, and Fire. Despite coming from
different anthropogenic drivers, which act upon different scales,
deforestation and extreme drought events may damage tropical
forest ecosystems in an analogous way: Both have the potential
to enhance mortality selectively, creating degraded areas in
which the equilibrium state of the humid forest can be disrupted.
A great number of studies and advances were made in recent

decades, to better understand the impacts of drought extreme
events on tropical forests. However, important questions still
remain. In fact, the ability of some areas of the Amazon rain-
forest to maintain high ET rates and, eventually, keep growing or
begin leaf flushing (108) during the dry season does not guar-
antee that humid forest could be resilient to extreme and pro-
longed droughts. In situ observations of the impact of “natural”
extreme droughts (109) and artificially induced droughts for
several years (110–112) showed that forest responds with in-
terruption of growth and mortality of some species during a
prolonged drought period. The results of artificially induced and
natural droughts have shown that the larger trees [diameter at
breast height (dbh) > 30 cm], together with lianas, are the most
vulnerable ones (112). This behavior is contrary to the hypoth-
esis, previously assumed, that the larger trees would be more
resilient to droughts as a result of a deeper root system, allowing
them to capture water from the deeper soil layers as a drought
survival strategy. It was observed, however, that these large trees
could be under water stress due to a significant exposure to solar
radiation, eventually dying by cavitation and embolism (113)
during extreme droughts.
The vulnerability of the larger trees is a critical aspect of forest

functioning and maintenance. It implies that droughts can act se-
lectively, changing species composition and endangering local
biodiversity (109). In addition, mortality of the highest species re-
duces the shading over lower canopy, litterfall, and soil. The in-
creasing incident radiation in these areas enhances temperature
and dryness, increasing vulnerability to subsequent droughts as well
as to ignition sources and fire. Although the drought effects on
stem growth could cease as soon as the drought finishes (3), this is
not the case for tree mortality. In addition, the increase of dead
biomass can result in a number of negative aspects: loss of habitat
of endemic species, changes in the composition and biome struc-
ture, and changes in carbon budget and energy fluxes between the
land surface and the atmosphere, besides potentially acting as a
positive feedback to climate change.
Extreme events and deforestation can act synergistically in a

two-way mode. Deforested areas can affect regional climate, and
the regional climate, in its turn, can amplify the impact of de-
forestation, by increasing tree mortality far beyond the limits of
the deforestation edges. In both situations, fire occurrence and
spreading is greatly amplified. It has been observed that the
forest fire scars in the Amazon increased substantially during
extreme droughts years, particularly in the edges between intact
forest and deforested areas. The association between a dry forest
environment (soil and litterfall) and ignition sources from the
anthropic activities (mainly the agricultural practices of slash and
burn) promotes the leakage of fires toward the intact forest
areas. The absence of rainfall, typical of the drought years, fa-
cilitates its propagation (46, 114–120).
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Under normal conditions of high precipitation amounts and
high atmospheric moisture, spontaneous occurrence of fire in the
Amazon rainforest is quite rare (121). As a result, most of the
local species are not adapted to fire, which hampers their re-
covery after recurrent burns. Forest areas submitted to succes-
sive fires over the years experience a change in the prevalence of
secondary vegetation (119). Huge and successive fires have
substantially increased tree mortality and favored the occurrence
of short-life-cycle pioneer species. Invasive grasses observed in
the burned areas act as a potential source of ignition during
subsequent events of droughts, potentially indicating a change in
the biome composition (71). This transition is more likely to
occur in fragmented forest areas where disturbances are frequent
and the dry season is longer (>4 mo to 5 mo) (71), or, in other
words, at the southern region of the Amazon forest.

CO2 Fertilization and Forest Mortality. In a CO2-enriched atmo-
sphere, one of the few potentially resilience-increasing aspects for
forests seems to be the effect known as “CO2 fertilization” (122).
The increasing concentration of this gas in the atmosphere has
been recognized as being responsible for faster growth of trees, a
fact that has been proven in large-scale experiments (123–126).
However, there are large uncertainties about the long-term re-
sponse of the tropical forests to this effect (127), although mod-
eling of this effect for the Amazon indicates that the impact of high
degrees of climate change are attenuated, but not to the extent of
avoiding forest loss (128). In a CO2-enriched environment, the
plants can respond with stomatal closure to capture the same
amount of CO2 required for photosynthesis (129). As a conse-
quence, transpiration rates could decrease, potentially returning a
lower amount of vapor to the atmosphere, or, in other words, al-
tering ET rates (130). Ultimately, this behavior could impact pre-
cipitation in the Amazon, which, as shown above, plays an
important role in generating dry season precipitation. Another
unexpected unfavorable effect of CO2 fertilization could be the
increase of mortality rates of adult trees in the tropics (131).
Terrestrial ecosystems and, in particular, tropical forests have

been recognized as strong carbon sinks, comparable to the oceans
(132–134). However, the potential connections between sinks of
carbon and the spatial patterns of soil and tree characteristics
across the region are also noteworthy. In the west, younger fertile
soils (135) associated with enhanced plant growth coexist with
higher tree mortality, complicating the interpretation of carbon
sink (13, 136). In the eastern and central portions of the region,
weathered and relatively infertile soils (135) host trees that live
longer and grow taller (13, 136). Although these locations may
potentially stock larger carbon pools in the long term, the re-
sponses to CO2 fertilization may be limited due to relative low
nutrient availability (137). Despite uncertainties, it has been rec-
ognized that the mature forests of the Amazon store around 150
PgC to 200 PgC in their biomass (15), and the forest seems to be
acting as an overall carbon sink, with assimilation rates estimated at
0.4 PgC·y−1 (109) over the recent past. Carbon stored in forests
each year occurs in the form of growth of branches and trunks, new
leaves and roots, and increase of soil organic matter (138). How-
ever, from field inventories carried out in 321 plots from 1983 to
2011, it was observed that the Amazon forest could be moving from
a carbon sink to a carbon source ecosystem (131). Although the
tree growth data confirmed the Earth’s surface as a strong carbon
sink, the same data show a decline in the growth rate of carbon
accumulation and a one-third decline in net increase in above-
ground biomass in the 2000s compared with the 1990s. Factors
explaining this behavior are still not clear, but the main hypothesis
is that the increase in forest productivity in recent years due to CO2
fertilization effect could have accelerated the life cycle of trees,
anticipating their death when still young (131, 139–142). To reduce
the uncertainties about the effect of increasing atmospheric CO2
concentrations on tropical ecosystems, a group of international

scientists are proposing to carry out a Forest Free-Air CO2
Enrichment-type experiment in the Amazon (143).

Impacts of Hydropower Dams in the Amazon. Major anthropogenic
land-use change in the Amazon historically has been a conse-
quence of either growing international demand for agricultural
commodities or of growing energy demand domestically. In this
context, the Amazon has been historically identified as a source of
massive growth in hydropower capacity, and all Amazonian coun-
tries have made plans for its use in the present and in the fore-
seeable future. For instance, the Brazilian government has planned
the expansion of hydroelectric power generation in the Brazilian
Amazon to make it a large net exporter of electricity to the rest of
the country. The plan calls for 30 new large dams in the next 30 y
(23), with the associated flooding of ∼12,000 km2 (144). The
flooding of these areas will cause a series of environmental im-
pacts: significant increases of greenhouse gas emissions (145),
disorders to local wildlife by blocking mass fish migration patterns
and changes in ichthyological diversity (146, 147), loss in connec-
tivity between upstream and downstream (148), decreased pro-
ductivity in lowland Amazon floodplains due to the retention of
nutrients by reservoirs (149), hydrological alterations through the
water level change (150), deforestation and degradation of forests
near the reservoir (27), transmission of parasitic diseases to hu-
mans such as malaria and leishmaniasis (151, 152), social impacts
with the displacement of traditional populations and indigenous
peoples (153, 154), and reduction of fish catch potential (155).

Climate Change, Forest−Climate Equilibrium States, and the Future of
the Amazon Forests. Taken alone, the drought impacts could be
harmful enough for the ecosystem maintenance and integrity.
Their joint action and the synergic effects with other anthropo-
genic drivers such as deforestation and fire have the potential to
strongly amplify these impacts, so that the collapse of tropical
rainforest (156, 157) and its transformation into a drier and
impoverished savanna-like biome (7, 158) have been anticipated
by computational models, and have been continuously validated
by field observations. Studies in forest sites, in fact, support the
assumption of a positive feedback between relatively frequent
(1 to 3 y) fires and degradation (71, 115), which favor the
presence of grasses and shrubs (115), secondary vegetation (119),
and pioneer species that do not take long to become flammable
(71). Controlled fire experiments carried out in the transition
forests of northern Mato Grosso showed great incidence of li-
anas and tree mortality, supporting, according to the authors
(71), the likelihood of “savannization” of parts of the Amazon.
Depending on the scale, these changes could ultimately drive
changes in the local climate, pushing the ecosystem toward a
different forest−climate equilibrium state (159), that is, the one
where most of the tropical forests in southern, southwestern, and
southeastern Amazon are replaced by degraded savannas as
predicted by models (91, 106, 158, 160). Evidence that the re-
lationship between degraded forest, regional climate change, and
a change in the equilibrium would lead to a tipping point in the
Amazon region is described as a medium-confidence likelihood
(161), but is already being observed in the Xingu basin (71).
At this point, it is important to assess the trends of the drivers of

change conducive to savannization or forest dieback risk. In recent
years, deforestation rates fell by about 80% in the Brazilian Am-
azon since 2005 (33). As mentioned above, the Amazon has ex-
perienced a succession of extreme climatic events since 2005 (see
Precipitation Variability and Extremes). However, increased floods
do not compensate fully for an increase of droughts in terms of
forest vulnerability, especially due to increased fire frequency
during droughts, which wreak havoc to forest resilience (18). This is
supported by a trend of increasing observed forest mortality (131),
together with the fact that forest fires have not decreased as
expected (162). Another important driver is, of course, global
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warming. The Amazon region has experienced a temperature in-
crease of close to 1 °C (51, 73), mostly due to global warming. It is
estimated that 3.5 °C of global warming (that corresponds to
about 4 °C temperature increase in the Amazon) could disrupt
the forest−climate equilibrium, leading to substantial loss of
tropical forests (106, 160, 161). In addition, as mentioned above,
there is some observational evidence of a lengthening of the dry
season in southern−southeastern Amazon, and this is the most
important driver of forest transitioning to savanna as claimed by the
hypothesis of Amazon savannization (7) because the climate en-
velope for tropical forests requires a dry season (less than 100
mm·mo−1) no longer than 4 mo.
There have been attempts to use climate and vegetation models

to quantify the impact of changes in climate due to global warming
and due to deforestation on the distribution of major biomes in
the Amazon as summarized in Modeling Efforts and Advances, in-
cluding analysis (Figs. S1 and S2 and Table S4). The results show
that the calculated area of tropical forest remaining, for simula-
tions of biome distribution when only climate change forcing is
considered, is about 15% smaller by 2050 for Intergovernmental
Panel on Climate Change (IPCC) scenario Representative Con-
centration Pathway 8.5 Wm−2 (RCP8.5) in comparison with the
change for scenario RCP2.6, given that the amplitude of climate
change is vastly larger for the former scenario, and the effect in-
creases in time (Fig. S1). For more drastic changes, taking into
account the combined effect of climate change scenarios, regional
climate change due to large-scale deforestation, and the effect of
forest fire making tropical forests more vulnerable, the calculations
project a substantial reduction of over 60% in the forest area in the
Amazon by 2050. Most of the biome type changes occur over
eastern and southern Amazon, with replacement of tropical forest
by seasonal forest and tropical savanna (Fig. S2). The effect of fire
in this region is important in all scenarios in further decreasing the
area of tropical forest. Northwest Amazon presents the smallest
changes in reduction of tropical forest, indicating that, even for
substantial land-use and global climate changes, the resulting cli-
matic conditions would still support tropical forest in that region
(Fig. S2). All of the calculations assume the so-called CO2 fertil-
ization effect (see CO2 Fertilization and Forest Mortality). In the
absence of this moderating effect, the forest replacement would be
considerably higher for all scenarios.
Summing up, it has been established by modeling studies

that the stability of Amazon forests may have at least two
tipping points that, once one or both are transgressed, would
entail irreversible large-scale forest dieback and a tendency for
drier seasonal forests or impoverished tropical savanna to
prevail over 30 to 50% of the basin, especially in the southern
and eastern portions.
That is, we have identified the risks of land-use and climate

change. Are there solutions to eliminate or mitigate those risks?
Or, alternatively: Is the fate of the Amazon predetermined, given
the likely risks to the Amazon ecosystems spelled out in Impacts
of Anthropogenic Drivers of Change in the Amazon, or can we
nudge a better outcome leveraging humanity’s limitless ingenuity
in scientific discovery and solving seemingly intractable problems
with an innovation model that has, as its foundations, a number
of scientific and technological revolutions quietly transforming
the world economy?
The Amazon development debate has been torn between

attempting to reconcile maximizing conservation versus in-
tensification of traditional agriculture and expansion of hydro-
power capacity. In Third Way as Paradigm, we argue for a Third
Way based on aggressively researching, developing, and scaling
up a new high-tech innovation approach that sees the Amazon as
a global public good of biological and biomimetic assets that can
enable the creation of innovative high-value products, services,
and platforms for current and for entirely new markets through

combining advanced digital, biological, and material technologies
of the Fourth Industrial Revolution in progress.

Third Way as Paradigm of Sustainable Development for the
Amazon
In terms of development policy pathways for the Amazon, two modes
have historically dominated: (i) a valuable nature conservation
approach with large swathes of territory legally protected from
any economic and human activity outside indigenous peoples—
which comprise 2.1 million km2, or about 43% of Brazilian
Amazon (153, 163, 164); and (ii) an approach that has focused
on conversion or degradation of forests for the production of
either protein commodities (e.g., meat and soya) or tropical
timber at the forest frontier and the build-out of massive hy-
dropower generation capacity—which together have been his-
torically responsible for massive deforestation of the Amazon
(30, 31) and generated other significant negative externalities.
Recently, there have been suggestions of promoting grain

agriculture intensification (165) and higher intensification of
cattle ranching to substantially increase meat production (22) in
areas already deforested through recovery of degraded pastures.
However, even though these approaches can potentially provide
a “transition bridge” toward a safer sustainable development
model, they are inconsistent with the rigorous zero-deforestation
target necessary, among other things, for climate change stabi-
lization, because the exponential demand growth of these com-
modities by the emerging middle class in the emerging markets,
in the end, will likely depend to a greater or lesser extent on
continuously expanding the agricultural frontier.
Given Brazil’s huge underexploited central and distributed

renewable energy generation and energy efficiency potential in
regions much closer to the consumption centers (166, 167) versus
energy demand in the Amazon that can be met by local renew-
able sources (168–170), we argue that it should be feasible to
plan for energy generation capacity increases that do not rely on
new hydropower capacity from the Amazon.
On the other hand, the Amazon biological (e.g., biomimetic)

assets may hold promise for advanced energy production inno-
vations. In nature, photosynthesis generates energy for plants,
and microorganisms generate their own energy from other
sources (e.g., sulfur-fixing bacteria). These processes have in-
spired innovations in advanced microbial fuel cells (171). In
addition, the Tungara frog species that creates long-lived foams
has inspired new energy generation and carbon dioxide seques-
tration technologies (172). Finally, plants have also directly in-
spired solar cell design, potentially generating much cheaper
alternatives to silicon-based photovoltaics (173).
We argue therefore that there is a Third Way within reach in

which we aggressively research, develop, and scale a new high-
tech innovation approach that sees the Amazon as a global
public good of biological assets and biomimetic designs that can
enable the creation of innovative high-value products, services,
and platforms for current and for entirely new markets by ap-
plying a combination of advanced digital, material, and bi-
ological technology breakthroughs to their privileged biological
and biomimetic assets (please refer to Implications of the Fourth
Industrial Revolution for the Sustainable Development of the
Amazon for more details on the Fourth Industrial Revolution).
Biological systems in the Amazon are the result of millions of

years of evolution. Humanity, as a whole, has long relied on
observing and learning from nature, just as the famous Icarus
tried mimicking bird flight from his prison island in ancient
Greek mythology. Fast forward, and the search for biomimetic
applications has developed into a scientific discipline leading
inevitably to a large number of biomimicry-based innovations.
Biomimicry innovations in the Amazon should focus on

learning from and then emulating Amazonian natural forms,
processes, and ecosystems to create more sustainable designs
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and innovations (174). We are rapidly gaining understanding on
how things are created in nature (materials), how organisms
sense their surroundings (sensors), how they move in their en-
vironment (biomechanics and kinetics), and how they behave
and function (processes) (175). In addition, there is significant
innovation potential to focus on learning from the Amazon in
biomimicry-enabled nanoscience, reproducing complex biological
systems to solve problems on a nanomolecular scale (176, 177),
create environmentally friendly process and pollution pre-
vention/remediation technologies, design bioinspired textile
structures (178), aid in energy production, and provide insight
in behavioral and cognition—artificial intelligence robotic—
applications (179), which are in the early phase of the
innovation cycle.
In the short term and with a low-tech approach, we estimate

that it is quite feasible to develop a number of biodiversity-based
product value chains capable of reaching global markets with
unique differentiation (180, 181). This new economy has the
potential to become much larger than the present one that is
based on the unsustainable use of natural resources in the Am-
azon. A number of biodiversity products from the Amazon,
such as babassu (Attalea speciosa), cupuaçu (Theobroma grandi-
florum), and the Brazil nut have already impacted the local
economies, and there are plenty more to be discovered and
commercialized (182). Pioneering illustrations of this new bio-
diversity-based economy are the recent emergence of assai
(Euterpe oleracea) production that has reached the multibillion-
dollar scale (183–186). The spilanthol alkaloid found in the
leaves, branches, and flowers of jambu (Spilanthes oleracea) is
described in patents as appropriate for anesthetic, antiseptic,
antiwrinkle, toothpaste, gynecological, and antiinflammatory
uses (187). Other products of the Amazon biodiversity are es-
sential oils of species such as rosewood (Aniba rosaeodora),
nhandiroba (Carapa guianensis), and copaiba (Copaifera langs-
dorffii) that are amenable for end-to-end processing in the
Amazon and can be alternatives in the formation of a fluorine−
xylo−chemical hub for cosmetic and pharmaceutical products in
the Amazon (188). The bacuri (Platonia insignis) is an Amazo-
nian fruit in increasing demand for ice cream, candy, and juice
products. The oil extracted from its seeds is used as an antiin-
flammatory substance in traditional folk medicine and in the
cosmetics industry (189). New uses of biodiversity-based prod-
ucts are being developed and patented more often [e.g., ucuuba
(Virola Surinamensis) (188) and murumuru (Astrocaryum mur-
umuru) butter (190)] in the cosmetics industry.
Beyond these new developments in the right direction, how-

ever, the Fourth Industrial Revolution opens a new paradigm of
seeing tropical regions not only as potential sources of natural
resources and biodiversity but also as reserves of precious bi-
ological biomimetic knowledge that can fuel a new development
model that can benefit both local/indigenous populations and the
world at large.
Our view is that transitioning to this sustainable development

model will require an Amazon-specific Fourth Industrial Revo-
lution innovation “ecosystem” that is able to rapidly prototype
and scale innovations that apply a combination of advanced
digital, biological, and material technologies to the Amazon’s
renewable natural resources, biomimetic assets, environmental
services, and biodiverse molecules and materials. This sustain-
able development model would then provide a basic foundation
to nurture a biomimetic innovation ecosystem model for the
region that would be capable of capturing synergies between
private and public R&D laboratories, public−private partner-
ships, private and social entrepreneurs, venture capital, and in-
novative corporations—much like in Silicon Valley. For this
innovation ecosystem to be developed over time, a new Amazon-
specific innovation public−private partnership needs to be in
place, together with an enabling regulatory framework that deals

with good practice in dealing with biomimetic knowledge and
assets. In particular, the Amazon requires an aspirational type
“man on the Moon” mission that draws on frontier knowledge
across digital, biological, and advanced materials to attain the
goal of big science deployed to meet big problems. The role of
the government and high-tech start-ups will be particularly im-
portant in the first-stage capital-intensive high-risk domains that
the corporate sector tends to shy away from. Just as the develop-
ment of the Internet was funded initially by the US government
that, in time, created a platform for innovation for social, private,
and public entrepreneurs around the world, so should the path be
set for the Amazon innovation ecosystem that we aspire to develop.
The Amazon region presents limited potential for knowledge

generation and capacity building partly due to a limited number
of research institutions and researchers (191, 192). In this con-
text, a critical missing element for transforming local develop-
ment toward sustainability is human capital in the region.
Brazilian Amazon universities produce only 2% of Ph.D.s
trained in Brazil every year (330 out of 16,745 in 2014)—in
contrast, the Brazilian Amazon has about 11% of the population
(see Tables S5 and S6 in Datasets Used to Derive the Fraction of
Ph.D.s Trained in Brazilian Amazon Universities)—and very few
are trained in innovative research areas of advanced digital, bi-
ological, and material sciences that should serve as pillars of the
Fourth Industrial Revolution in the region. Developing a locally
innovative research capacity and attracting human capital are
essential elements for long-term sustainability. This should in-
clude creating new research institutions across the region, taking
notice of subregional potential of renewable natural resources
and also enhancing connectivity through broadband satellite-
based* and fluvial fiber optics Internet (191) [Connected Ama-
zon Project (Amazônia Conectada) was established by Ministe-
rial Ordinance 596, published in Brazilian Federal Register on
July 23, 2015, issued by the Ministry of Science, Technology and
Innovation] and through provisioning a common high-perfor-
mance computing infrastructure for the region.
Transforming the current regional developmental model pre-

sents multidimensional challenges, which cannot be achieved
through science, technology, and innovation alone. It has be-
come vital and indeed urgent to instigate a real scientific, high-
tech, and innovation revolution in the Amazon. The enormous
institutional and governance challenge is to find the pathways to
transform this vast and mostly unknown natural capital into a
global common public good that provides a foundation for
public, private, and social entrepreneurs to develop and scale
innovations as a basis for a novel high-tech regional sustainable
development model for the Amazon.

Concluding Remarks
Overcoming the risks to the integrity and functionality of Ama-
zon ecosystems does not depend exclusively on a new local,
standing forests sustainable development paradigm such as the one
put forth in Third Way as Paradigm of Sustainable Development
for the Amazon. Reducing tropical deforestation to nearly zero is
necessary for biodiversity conservation, provision of ecosystems
services, and, to some extent, climate mitigation by reducing
land-cover change emissions, but it is not sufficient at all to avert
the risk of global climate change. Unchecked climate change
poses a great danger of exceeding tipping points for the forests.
Therefore, a gargantuan global effort of decarbonizing the world

*The geostationary satellite will be the first satellite fully controlled by the Brazilian
government, and the project involves the Ministries of Defense, Communications, and
Science, Technology and Innovation. The Telebras and Visiona Space Technology com-
panies were responsible for the construction if equipment, which started in 2014; equip-
ment should be ready for release in the first half 2016. The project was funded through
the National High Speed Internet Program (Programa Nacional de Banda Larga-PNBL),
which was established by Ministerial Decree 7.175, by the Ministry of Communications.
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economy is called for to avoid transgressing these boundaries
and to meet the safeguards of maximum 2 °C global warming as
set by the recent Paris Agreement during the 21st Conference of
the Parties of the United Nations Framework Convention on
Climate Change.
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